
Towards a Scalable Multiprocessor User-level Environment

Udo Steinberg
Technische Universität Dresden

udo@hypervisor.org

Bernhard Kauer
Technische Universität Dresden

bk@vmmon.org

Abstract
Our previous research on NOVA has shown that a small
and efficient virtualization environment can be built by
using microkernel construction principles in the design of
a virtualization environment [9]. In NOVA, virtual-machine
monitors, device drivers and other system services run as
user-level applications. The microhypervisor provides com-
munication mechanisms and enforces temporal and spatial
separation between the components running on top of it.

Due to the increasing numbers of cores on a chip, even in
embedded systems, support for multiple processors should
be a primary objective in the design of any new user-level
environment. In this paper we show how to construct a
scalable multiprocessor user-level environment that requires
only a minimal set of kernel abstractions.

1. Motivation
NOVA is a virtualization architecture that consists of a small
microhypervisor and a user-level environment running on
top of it. The microhypervisor enforces spatial and tempo-
ral separation and implements only basic mechanisms for
virtualization, communication and resource management.

User-level components provide additional operating sys-
tem functionality. One type of component is the user-level
virtual-machine monitor, which manages the execution of
an unmodified guest operating system in a virtual machine.
In our current implementation, each virtual machine has its
own associated VMM and every virtual CPU in a virtual
machine has a dedicated handler thread in the VMM. There-
fore, the VMM can handle most VM exits of different virtual
CPUs in parallel. However, when a virtual CPU accesses an
emulated device, the VMM may need to contact the driver
for the hardware device to submit or request data.

The hardware devices of the platform are managed by
user-level device drivers that run in separate address spaces

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IIDS’10, April 13, 2010, Paris, France.
Copyright c© 2010 ACM TBD. . . $10.00

and are therefore isolated from the rest of the system. Each
device driver acts as a server and exports a communication
interface to the rest of the system. Client applications such
as the VMM communicate with the device driver through its
external interface in order to use the hardware device.

The decomposed user-level environment improves the
dependability of the whole system because it ensures fault
containment. If one component crashes, unrelated parts of
the system remain unaffected. In some cases the faulty
component can be restarted transparently. In contrast to
monolithic systems where the whole operating system is
implemented as a single entity in which all subsystems
ultimately trust each other and communication between
subsystems is unrestricted, the communication and trust
relationships of a decomposed multiserver user environment
can be much more fine-grained. However, the decomposed
design introduces additional communication overhead be-
tween components. Instead of using direct function calls,
components of the user-level environment must use inter-
process communication to cross address-space boundaries.

The NOVA microhypervisor has been designed for low
communication overhead and efficient multi-processor op-
eration. The majority of operations on different CPUs can
execute in parallel without the need for expensive syn-
chronization or cross-processor signaling. User applications
can schedule their threads on different physical processors
and thereby fully exploit the parallelism of the underly-
ing hardware platform. However, the performance of the
system depends not just on the parallelism of individual
applications, but also on the scalability of system services,
such as file systems, network stacks and device drivers.
If these components are implemented as single-threaded
servers, service invocation can become a serious scalability
bottleneck. The logical conclusion is to build all critical
system components as multi-threaded servers. In this paper
we explore the design space for the construction of scal-
able user-level components. We discuss what their external
interface should look like and how servers can internally
synchronize access to critical sections. This paper makes the
following research contributions:

• We describe communication and synchronization primi-
tives that facilitate the construction of scalable user-level
components.

• We analyze what functionality a multiprocessor kernel
should provide to expose the full parallelism of the
underlying hardware platform to user-level programs.
• We discuss how synchronous requests and asynchronous

responses can be combined to achieve temporal separa-
tion and low communication latency.

2. Design
Scalability

When multiple clients access a single-threaded server, the
server can handle only one request at a time and subsequent
requests must wait for the previous request to finish. Because
single-threaded servers handle all requests serially, the scal-
ability of the system is limited. Amdahl’s Law states that if P
is the proportion of a program that can execute in parallel and
1 − P is the proportion that executes serially, the maximum
speedup that can be achieved by using N processors is

1
1 − P + P

N

Figure 1 illustrates that a workload with a parallel portion
of 95% only achieves a speedup of 10x with 16 processors.
Furthermore, the maximum speedup is limited to 20x. A
workload with a parallel portion of 90% achieves a speedup
of at most 10x, no matter how many processors are used.

0

2

4

6

8

10

12

14

16

18

20

1 4 16 64 256 1024 4096

Sp
ee

du
p

Number of Processors

95% parallel
90% parallel
80% parallel

Figure 1: Amdahl’s Law: The maximum speedup of a program is
limited by the proportion of its parallel and serial parts.

To mitigate the impact of Amdahl’s Law, our design goal
is to minimize the amount of code that executes serially
in each server of the user-level environment. Moreover, if
a server needs to contact other servers to handle a client
request, the length of the serial section is extended by the
duration of all nested requests. Additionally, nested requests
to other servers may have to wait for previous requests to
those other servers to finish, which aggravates the scalability
problem. We therefore construct system services as multi-
threaded components. The number of concurrent requests

that a server can handle now only depends on the number
of worker threads provided by the server and the number of
CPUs in the system.

Synchronization

A single-threaded server does not need internal synchro-
nization, because the external interface serializes all execu-
tion within the server. In contrast, a multi-threaded server
requires a synchronization mechanism that facilitates the
implementation of critical sections. One example of a server-
side critical section is access to device registers in a driver.
Most devices require more than one register access to sub-
mit a request. Therefore, in a driver with multiple worker
threads, only a single thread should program the hardware
registers at any point in time.

Accounting

We also consider resource accounting to be an important
design issue. When a server works on behalf of a client, the
time spent handling the request can be either accounted to
the client or to the server. Things get more complicated when
more than one server is involved in the handling of a client
request. The time budget that a server needs to handle client
requests depends not only on the request rate, but also on the
duration of each individual client request, which may itself
depend on the input parameters. Therefore, our approach
is to completely account the handling of a request to the
initiating client. As a result, the worker threads in servers do
not need a timeslice of their own, which reduces the number
of timeslices in the system and simplifies their admission.

However, not every request in the system can be ac-
counted to one particular client. For example, the handling
of a disk interrupt that signals the completion of multiple
read requests from different clients cannot be accounted
to one particular client and would need to be split up
among all involved clients. Other requests such as a network
interrupt due to reception of unsolicited ARP traffic cannot
be attributed to any client in the system. Because these
events are inherently asynchronous and handled by the IRQ
thread, we assign IRQ threads their own timeslice.

3. Kernel Requirements
In this section we deduce kernel requirements from the
design decisions in the previous section. We show how the
NOVA interface implements these requirements.

Multithreading

Because we build servers with multiple threads, the kernel
should provide many lightweight threads. In order to handle
independent client requests in parallel, a server could instan-
tiate one worker thread per client. However, a large number
of worker threads is often a waste of resources. Because each
CPU can execute only one thread at a time, it is sufficient for
servers to provide one worker thread per CPU.

The helping mechanism [10] in the kernel ensures that
new client requests help to run the previous request on the
CPU to completion. Helping works as follows: If a client
wants to send a message to a worker that is currently busy
handling another request, the client donates its timeslice to
the preempted worker to help it finish the previous request.
Once the worker becomes available again, it handles the
request of the helping client. Helping makes accounting less
precise because clients use their timeslice to help others. For
clients with strict accounting requirements, the server can
provide dedicated worker threads.

The NOVA microhypervisor supports multithreading by
means of execution contexts. Each execution context can
be created either with or without a timeslice. Execution
contexts have a small memory footprint which can be as low
as two memory pages — one for the thread control block and
one for user-level data structures.

Synchronous/Asynchronous Communication

In a multi-server user-environment services are isolated from
one another by means of address spaces. Communication
between these services therefore requires a kernel mecha-
nism for crossing address-space boundaries such as explicit
IPC system calls, or shared memory and signaling. IPC is
usually executed in two steps: the kernel first copies the
message data and then transfers control from the sender to
the receiver. The communication between two threads can
be either synchronous or asynchronous.

In case of synchronous client-server communication, the
client blocks after the data transfer and the kernel transfers
control to the server. After sending the reply, the server
blocks until the next request and the client regains control. If
client and server are located on the same CPU, synchronous
communication can be combined with timeslice donation,
where the client donates its timeslice to the server for the
duration of the request. If both threads are located on differ-
ent CPUs, timeslice donation cannot be used. Furthermore,
synchronous cross-CPU communication requires the kernel
to perform an expensive remote unblock operation in both
directions. If the communication between client and server
is asynchronous, the client continues to execute after the
message transfer. In that case the server needs its own
timeslice to handle the request.

The NOVA interface supports synchronous IPC with
timeslice donation between threads. It also provides asyn-
chronous signaling via semaphores and mechanisms to es-
tablish shared memory between address-spaces.

Synchronization

When a server implements multiple threads on different
processors, the kernel must provide an efficient synchro-
nization mechanism that works across CPUs. NOVA sup-
ports cross-processor synchronization via semaphores. In a
naive semaphore implementation, every up() or down()
operation on a semaphore requires a system call. We im-

plemented an optimized user semaphore that avoids the
system call in the cases where down() only decrements
the counter without blocking the caller, or where up() just
increments the counter without releasing a thread blocked
on the semaphore. The user semaphore consists of a kernel
semaphore ksem and a user counter ucount, which resides in
memory shared by all threads using the semaphore. If ucount
is negative, it denotes the number of threads waiting to enter
the critical section. Otherwise it indicates how many threads
are still able to enter the critical section without blocking.
The following code snippet shows the implementation of the
user semaphore. The atomic xadd operation decrements or
increments the counter and returns the previous value.

void usem::down() {

if (atomic_xadd (&ucount, -1) <= 0)

ksem->down(); // block me

}

void usem::up() {

if (atomic_xadd (&ucount, +1) < 0)

ksem->up(); // release someone

}

Because both functions can be preempted between the
atomic counter update and the subsequent block/release
operation or execute in parallel on a multiprocessor system,
an interesting scenario can occur where a down(), which
decrements ucount from 0 to -1 and then wants to block
on ksem, races with an up(), which increments ucount
from -1 to 0 and then wants to release a thread blocked
on ksem. This race condition is automatically dealt with by
the kernel semaphore that handles blocking and unblocking
of threads. The interesting observation is that the order in
which ksem->down() and ksem->up() execute does not
matter, because they mutually neutralize their effects. Either
ksem->down() puts the thread to sleep and ksem->up()
will wake it up again, or ksem->up() increments the
counter of the kernel semaphore and ksem->down() will
decrement it again.

Our user-level semaphores are based on similar ideas
as Linux Futexes [3]. The major difference is that in our
implementation the kernel is completely unaware of the
existence of the user counter and the associated user-level
semaphore code.

4. Application
In the last section we described the low-level primitives
that a kernel must provide to facilitate the construction
of a scalable user-level environment for a multiprocessor
platform. In this section we show how we use these prim-
itives to construct services that run on top of the NOVA
microhypervisor.

Application Crypto
Server

Disk
Server Disk

submittedin progress

Client Worker Worker
1) request

2) preprocess

3) submit

4) program

5) interrupt

Signal Handler Signal Handler IRQ Handler

find client find client

6) signal6) signal

reply reply

Worker

postprocess

Worker

postprocess

Client
7) pick up 7) pick up

Figure 2: A client accesses a disk driver through a crypto server that
implements transparent encryption and decrytion of disk blocks.
An access consists of three phases: request, signal and pick up.

Client-Server Communication

Figure 2 depicts a client-server scenario in which a client
wants to read a block from an encrypted disk. The encryption
and decryption of disk blocks is handled transparently by an
intermediate crypto server that is located between the client
and the disk server that implements the device driver for the
disk.

1) Request As a first step, the client sends a synchronous
IPC request to the crypto server to request the block. Syn-
chronous inter-process communication is similar to a remote
procedure call. The client donates its timeslice to the worker
thread in the crypto server and blocks until the crypto server
responds.

2) Preprocessing After receiving the request, the worker
thread in the crypto server can perform the necessary policy
checks to determine if the client is allowed to access the
disk block in question. If access is permitted, the worker
can perform a buffer cache lookup to check if the block has
been previously read from disk. If the block is available, the
worker can directly respond to the client.

3) Submit Otherwise the crypto server sends a syn-
chronous IPC to the disk server to read the block into
memory. The timeslice that the worker received from the
client is further donated to the disk server.

4) Program Upon receiving the request, the disk server
programs the disk controller with commands to read the
block. It should be noted that the entire handling of the disk
request has been accounted to the timeslice of the client.
After the disk server responds to the crypto server and the
crypto server responds to the client, the client can continue
executing its program while the disk is busy retrieving the
block.

5) Interrupt Once the block has been read into memory,
the disk controller generates an interrupt to signal comple-
tion of the request. The IRQ handler thread in the disk server

ClientCPU0

ClientCPU1

ClientCPU1

Memory
Shared

WorkerCPU0

WorkerCPU1

Disk

Disk Server

IRQ
HandlerCPU0

Figure 3: Request handling from different CPUs. One worker
thread per CPU facilitates parallel processing of requests. The
driver uses shared memory to internally forward the requests to
the IRQ handler thread. The IRQ handler is the only thread that
programs the hardware and synchronizes access to the device
registers with the arrival of interrupts.

is the handler for the disk interrupt. Because interrupts are
asynchronous events, the IRQ handler thread has its own
timeslice so that it can execute independently of any pending
client requests.

6) Signal When one or more disk requests have been
completed, the IRQ handler thread in the disk server sends
a signal to the clients that submitted these requests. In our
scenario the signal propagates via the signal handler thread
in the crypto server to the signal handler in the client. Signal
propagation uses semaphores instead of synchronous IPC
because each signal handler may need to fan out the signal
to multiple clients. Furthermore, servers do not necessarily
trust their clients.

7) Pick Up After the client has received the signal that
the read operation is complete, it can perform another
synchronous IPC to the crypto server to retrieve the data. The
purpose of the pick-up request is that the client is accounted
for any postprocessing that is required during the transfer of
the data from the disk server to the crypto server and back
to the client. In our example, the decryption of the block is
accounted to the client. It should be noted that the client can
use a single IPC to batch multiple read-, write- and pick-up
requests.

Internal Server Structure

Figure 3 shows the internal structure of a scalable disk driver
that is accessible on CPU0 and CPU1. For this purpose the
disk server creates a worker thread on each CPU. The worker
threads listen for incoming requests from their respective
CPU so that clients from different CPUs can contact the disk
server concurrently. In our example, a client from CPU0 and
another client from CPU1 simultaneously send a request to
their corresponding worker thread in the disk server.

While handling the request of its client, the worker on
CPU1 is preempted by another client from CPU1. The

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 10 20 30 40 50 60 70

Sp
ee

du
p

Parallel Proportion of Server Code (%)

400% 50% 30%

Figure 4: Speedup of a multi-threaded server over a single-threaded
server for workloads where the server-internal cost is 400%, 50%
and 30% of the cost of a cross-CPU call. The speedup depends
on communication overhead and on how much of the server
processing can be parallelized using per-CPU worker threads.

second client uses its timeslice to help the previous client
finish submitting its request (denoted by the dashed line).

All servers and device drivers share the common property
that they provide one or more worker threads per CPU to
handle concurrent client requests. However, the synchro-
nization in each server is specific to the internal data struc-
tures and, in case of device drivers, the requirements of the
hardware device. For example, a network driver that needs
to program the same registers for receiving and transmitting
packets synchronizes access to the device registers with a
single handler thread. A driver for a more sophisticated
network card with separate register files can use one thread
for receiving and another thread for transmitting packets.
Forwarding of requests from worker threads to handler
threads uses shared memory and semaphores. The advantage
of this approach is that the parallelism of client requests is
preserved all the way to the device driver. The driver can then
use its device-specific knowledge to serialize the requests
and submit them to the hardware in the most efficient
manner.

5. Evaluation
We evaluated an implementation of our proposed design
using synthetic benchmarks on an Intel Core i7 system. Our
test system had only 8 logical processors, but the scalability
issues we discuss were already visible at this scale.

Single-Threaded vs. Multi-Threaded Server

In Figure 4 we compare the scalability of a single-threaded
and a multi-threaded server. The single-threaded server han-
dles all client requests serially with one thread on CPU0.
Clients located on CPU1 through CPU7 issue requests to
the server using cross-processor IPC. For the multi-threaded
server we added a worker thread on each CPU as illustrated

1

10

100

1000

10000

100000

0 2000 4000 6000 8000 10000 12000

Fr
eq

ue
nc

y

Accounted CPU Cycles

Worker per Client Worker per CPU

Figure 5: CPU cycles accounted to the client’s timeslice for one
server request of approximately 5000 cycles. With a worker thread
per client, the client is accounted only for its own request. In servers
with one worker per CPU a client may be accounted for up to twice
as much if it needs to help the server finish the previous request.

in Figure 3. The worker threads accept client requests locally
on their CPU, perform the parallel part of the processing and
then forward the request cross-processor to the single thread
on CPU0, which handles the serial part of the processing.
Compared to the single-threaded server, the multi-threaded
server requires an additional IPC between the client and the
worker thread, but can use the worker thread to parallelize a
proportion of the server processing. Figure 4 illustrates that
the single-threaded approach is only preferable for servers
with a short critical section that cannot be parallelized. For
example, if the duration of the server code path is 50% of
the duration of a cross-processor IPC, then worker threads
already improve the scalability if 20% or more of the server
code can be executed in parallel. For longer server sections,
more processors or a higher degree or parallelism in the
server code, worker threads are always beneficial.

Worker Thread per Client vs. Worker Thread per CPU

If a server implements one worker thread per client, then
clients only compete for CPU time, but not for server
resources. If the server implements one worker thread per
CPU, then a new client may need to help the worker thread
finish the previous request on its CPU. Because all worker
threads on the same CPU are subject to time-sharing, the
server throughput is the same for both approaches. Figure 5
shows the distribution of accounted CPU cycles per client
request. More than 99% of all client requests cost approx-
imately 5000 cycles, which is the duration of one server
request in our benchmark. Without helping there is a smaller
peak at 6000 cycles, which includes the additional overhead
of a timer interrupt that signals the end of timeslice.

The accounted time can be up to twice the duration of
a server request in cases where the server is preempted
immediately after accepting the previous request and the

new client must help. The time accounted to a client may
also be less than a server request when others help run the
client’s request to completion. In the case of helping, the
distribution of accounted time is roughly uniform, because
the server can be preempted anywhere in its code path.

6. Related Work
Existing work on designing efficient multi-processor operat-
ing systems has mostly focused on improving the scalability
of the kernel. For example, K42 [7] achieves operating-
system scalability through partitioning and replication of
state at the kernel-object level. Corey [11] pushes the sharing
policy to user level and allows an application to specify
how OS resources are shared between different cores. Bar-
relfish [1] treats a platform with multiple heterogeneous
processors as a distributed systems and replicates kernel
state on every node. The nodes communicate with each other
solely through message passing. Our work focuses on the
design of user-level services, rather than kernel design.

We are currently not aware of any related work that
explicitly targets multiserver environments on top of multi-
core hardware. However, many systems move the tradi-
tional OS services to the application level and decompose
them into multiple servers. Minix3 [6] uses the multiserver
approach to increase the reliability of the system in the
presence of faulty device drivers. SawMill [4] showed how
the performance overhead of additional communication in
a multiserver system can be reduced. The Bastei archi-
tecture [2] achieves a minimal application-specific trusted
computing base with a multiserver design. Other research in
DROPS [5] and Nemesis [8] focused on achieving quality-
of-service guarantees for multimedia applications in a mul-
tiserver environment.

7. Conclusion
In this paper we outlined how a scalable user-level environ-
ment for a multiprocessor architecture can be built. By split-
ting servers into worker and IRQ handler threads, we can
scale the performance of servers with the number of clients.
Synchronous communication with timeslice donation facil-
itates precise accounting of compute-bound requests to the
client that issued them. In our implementation, clients do not
need to block on outstanding I/O. Instead, driver threads will
signal the completion of requests asynchronously.

We discussed what mechanisms a kernel must provide
in order to support the construction of a scalable user-level
environment and how they can be applied in the context
of the NOVA microhypervisor. We are currently applying
the construction principles described in this paper in our
user-level environment. In the future we plan to extend this
work by offloading I/O to dedicated physical processors.
Furthermore, we research how the timeslices of IRQ handler
threads should be configured to guarantee certain quality-of-
service constraints.

References
[1] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,

S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
Multikernel: A New OS Architecture for Scalable Multicore
Systems. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP), pages 29–44. ACM,
2009.

[2] N. Feske and C. Helmuth. Design of the Bastei OS Architec-
ture. Technical Report TUD–FI06–07, TU Dresden, 2006.

[3] H. Franke, R. Russell, and M. Kirkwood. Fuss, Futexes and
Furwocks: Fast Userlevel Locking in Linux. In Proceedings
of the Ottawa Linux Symposium (OLS), pages 479–495, 2002.

[4] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone,
V. Uhlig, J. E. Tidswell, L. Deller, and L. Reuther. The
SawMill Multiserver Approach. In Proceedings of the 9th
ACM SIGOPS European Workshop, pages 109–114. ACM,
2000.

[5] H. Härtig, R. Baumgartl, M. Borriss, C.-J. Hamann,
M. Hohmuth, F. Mehnert, L. Reuther, S. Schönberg, and
J. Wolter. DROPS: OS support for distributed multimedia
applications. In ACM SIGOPS European Workshop, pages
203–209, 1998.

[6] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Construction of a Highly Dependable Operating
System. In Proceedings of the 6th European Dependable
Computing Conference (EDCC), pages 3–12. IEEE Computer
Society, 2006.

[7] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wis-
niewski, J. Xenidis, D. Da Silva, M. Ostrowski, J. Appavoo,
M. Butrico, M. Mergen, A. Waterland, and V. Uhlig. K42:
Building a Complete Operating System. SIGOPS Operating
Systems Review, 40(4):133–145, 2006.

[8] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The Design and Im-
plementation of an Operating System to Support Distributed
Multimedia Applications. IEEE Journal on Selected Areas in
Communications, 14(7):1280–1297, 1996.

[9] U. Steinberg and B. Kauer. NOVA: A Microhypervisor-Based
Secure Virtualization Architecture. In Proceedings of the 5th
ACM SIGOPS/EuroSys European Conference on Computer
Systems. ACM, 2010.

[10] U. Steinberg, J. Wolter, and H. Härtig. Fast Component Inter-
action for Real-Time Systems. In 17th Euromicro Conference
on Real-Time Systems (ECRTS 2005), pages 89–97. IEEE
Computer Society, 2005.

[11] S. B. Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang. Corey: An Operating System for Many Cores.
In Proceedings of the 8th Symposium on Operating Systems
Design and Implementation (OSDI), pages 43–57. USENIX
Association, 2008.

	1 Motivation
	2 Design
	3 Kernel Requirements
	4 Application
	5 Evaluation
	6 Related Work
	7 Conclusion

